Eigenvalue problem meets Sierpinski triangle: computing the spectrum of a non-self-adjoint random operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correspondence of the eigenvalues of a non-self-adjoint operator to those of a self-adjoint operator

We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at ±∞. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of ...

متن کامل

Spectrum of a non-self-adjoint operator associated with the periodic heat equation

We study the spectrum of the linear operator L = −∂θ − ǫ∂θ(sin θ∂θ) subject to the periodic boundary conditions on θ ∈ [−π, π]. We prove that the operator is closed in L2([−π, π]) with the domain in H per([−π, π]) for |ǫ| < 2, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenv...

متن کامل

Perturbation of multiparameter non-self-adjoint boundary eigenvalue problems for operator matrices

We consider two-point non-self-adjoint boundary eigenvalue problems for linear matrix differential operators. The coefficient matrices in the differential expressions and the matrix boundary conditions are assumed to depend analytically on the complex spectral parameter λ and on the vector of real physical parameters p. We study perturbations of semi-simple multiple eigenvalues as well as pertu...

متن کامل

Spectral Behaviour of a Simple Non-self-adjoint Operator

We investigate the spectrum of a typical non-selfadjoint differential operator AD = −d2/dx2 ⊗ A acting on L(0, 1) ⊗ C, where A is a 2 × 2 constant matrix. We impose Dirichlet and Neumann boundary conditions in the first and second coordinate respectively at both ends of [0, 1] ⊂ R. For A ∈ R we explore in detail the connection between the entries of A and the spectrum of AD, we find necessary c...

متن کامل

Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations

In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects. Résumé Dans ce travail nous continuons l’étude de l’asymptot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2011

ISSN: 1846-3886

DOI: 10.7153/oam-05-46